The Monotonicity of the *p*-Torsional Rigidity in Convex Domains

Denisa Stancu-Dumitru University Politehnica of Bucharest, Bucharest, Romania denisa.stancu@yahoo.com

 $29~\mathrm{mai}~2022$

For any bounded and convex set $\Omega \subset \mathbb{R}^N$ $(N \geq 2)$ with smooth boundary, $\partial \Omega$, and any real number p > 1, we denote by u_p the *p*-torsion function on Ω , that is the solution of the torsional creep problem

$$\begin{cases} -\Delta_p u = 1 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where $\Delta_p u := div(|\nabla u|^{p-2} \nabla u)$ is the *p*-Laplace operator. The aim is to investigate the monotonicity with respect to *p* for the *p*-torsional rigidity on Ω , defined as

$$T_p\left(\Omega\right) := \int_{\Omega} u_p dx.$$

More precisely, we show that there exist two constants $D_1 \in \left[\frac{1}{2}, e^{\frac{-1}{N+1}}\right]$ and $D_2 \in [1, N]$ such that for each bounded and convex set $\Omega \subset \mathbb{R}^N$ with $\frac{|\partial \Omega|}{|\Omega|} \leq D_1$, the function $p \to T_p(\Omega)$ is decreasing on $(1, \infty)$ while for each bounded and convex set $\Omega \subset \mathbb{R}^N$ with $\frac{|\partial \Omega|}{|\Omega|} \geq D_2$, the function $p \to T_p(\Omega)$ is increasing on $(1, \infty)$. Moreover, for each real number $s \in (D_1, D_2)$ there exists a bounded and convex set $\Omega \subset \mathbb{R}^N$ with $\frac{|\partial \Omega|}{|\Omega|} = s$ such that the function $p \to T_p(\Omega)$ is not monotone on $(1, \infty)$.

This is a joint work with Cristian Enache (American University of Sharjah, AUE) and Mihai Mihăilescu (University of Craiova & "Gheorghe Mihoc -Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics, Romania). This presentation is partially supported by CNCS-UEFISCDI Grant No. PN-III-P1-1.1-TE-2019-0456.