Stochastic convex orders and applications

Ioan Raşa
Technical University of Cluj-Napoca, Cluj-Napoca, ROMANIA
ioan.rasa@math.utcluj.ro

18 mai 2022

Let $p_{n, j}(x):=\binom{n}{j} x^{j}(1-x)^{n-j}, x \in[0,1], 0 \leq j \leq n$. The analytic inequality

$$
\sum_{i=0}^{n} \sum_{j=0}^{n}\left[p_{n, i}(x) p_{n, j}(x)+p_{n, i}(y) p_{n, j}(y)-2 p_{n, i}(x) p_{n, j}(y)\right] f\left(\frac{i+j}{2 n}\right) \geq 0
$$

valid for each convex function $f \in C[0,1]$, is the simplest illustration of the results presented in this talk. It is related with the shape preserving properties of the Bernstein-Schnabl operators, see [4, Sec. 3.4]. Its first proof [6] uses stochastic convex orderings. The first analytic proof [1] was followed by many other proofs, in analytic or probabilistic terms, involving more general families of operators and convex functions of higher order, see [2, [5] and the references therein. The talk surveys the existing results in this area and presents some new, very recent results and problems [3].

Acknowledgment : This is a joint work with Ana Maria Acu (Lucian Blaga University of Sibiu, Romania, anamaria.acu@ulbsibiu.ro).

Références

[1] U. Abel, An inequality involving Bernstein polynomials and convex functions, J. Approximation Theory 222 (2017), 1-7.
[2] U. Abel, D. Leviatan, An extension of Raşa's conjecture to q-monotone functions, Results Math. 75, 180 (2020).
[3] U. Abel, D. Leviatan, I. Raşa, Relations between the Bernstein polynomials and q-monotone functions, (submitted)
[4] F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Raşa, Markov Operators, Positive Semigroups and Approximation Processes, Walter de Gruyter, Berlin, Munich, Boston (2014).
[5] A. Komisarski, T. Rajba, Muirhead inequality for convex orders and a problem of I. Raşa on Bernstein polynomials, J. Math. Anal. Appl. 458(1) (2018), 821-830.
[6] J. Mrowiec, T. Rajba, S. Wasowicz, A solution to the problem of Raşa connected with Bernstein polynomials, J. Math. Anal. Appl. 446(1) (2017), 864-878.

