First observed by Kim and Tzavaras [1] roughly to decades ago, metastability in the viscous Burgers equation

\[u_t + uu_x = \varepsilon u_{xx} \]

refers to the peculiar dynamic phenomenon that for small \(\varepsilon \ll 1 \) the evolution consists of two stages: a) a fast initial transient during which an N-wave is formed (almost identical to the inviscid \(\varepsilon = 0 \) case) followed by b) a very slow decay of the N-profile to a diffusion wave, the system’s asymptotic state.

Subsequently, Beck and Wayne [2] have given a rigorous treatment of the problem, which they regard as a toy model for Navier-Stokes. In this contribution, we propose a new approach to the analysis of metastability based on relative entropy in the sense of [3].

As pointed out in [4], the phenomenon of metastability is quite relevant to the numerical integration of PDEs, from the perspective of long-time behavior of numerical schemes. This aspect is also considered.

Références

